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contributions to the areas of transition metal-catalyzed asymmetric hydrogenation
Abstract—Rhodium-catalyzed asymmetric hydrogenation of a-amino-b-keto ester hydrochlorides through dynamic kinetic resolu-
tion is described. The hydrogenation proceeds with the catalyst derived from a Rh complex and a chiral ferrocenylphosphine under
hydrogen in the presence of sodium acetate in acetic acid to afford anti-b-hydroxy-a-amino acid esters with 58–83% ee in a diaste-
reomeric ratio of 92:8–97:3.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. anti-Selective hydrogenation through DKR.
1. Introduction

Rhodium (Rh) in combination with chiral phosphines
has played a central role in the area of asymmetric
hydrogenation1 and the mechanism for Rh-catalyzed
asymmetric hydrogenation of olefinic substrates has
been elucidated by the pioneering work2 of Halpern.
We herein report that Rh-chiral phosphines catalyze
asymmetric hydrogenation of ketonic substrates
through dynamic kinetic resolution (DKR) in asymmet-
ric synthesis of anti-b-hydroxy-a-amino acid esters.
DKR is a powerful method for synthesizing one enan-
tiomer from a racemic starting material with a labile ste-
reocenter.3 The ruthenium (Ru)-catalyzed DKR was
originally developed by Noyori et al. in the asymmetric
hydrogenation of a-substituted b-keto esters, in which
they disclosed an efficient synthesis of syn-b-hydroxy-
a-amino acid esters from a-acetoamido-b-keto esters.4

As depicted in Figure 1, we have recently demonstrated
for the first time that the Ru-BINAP catalyst catalyzes
anti-selective asymmetric hydrogenation of a-amino-b-
keto ester hydrochlorides in the synthesis of anti-b-
hydroxy-a-amino acid esters with high diastereoselec-
tivities and enantiomeric excesses.5 This hydrogenation,
however, was limited to the substrates with alkyl groups
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at the C4 position. From our efforts to overcome such a
limitation, we found that iridium (Ir) in combination
with axially chiral phosphines also catalyzes anti-selec-
tive asymmetric hydrogenation of a-amino-b-keto ester
hydrochlorides bearing an aromatic ring at the C4 posi-
tion of the substrates with almost complete diastereo-
selectivity and high enantiomeric excess, which is the first
example of DKR using the Ir axially chiral phosphine
catalyst.6 Over the course of the catalyst screening in
our DKR study, we recognized that Rh, in combination
with chiral phosphines, is a potential catalyst for this
anti-selective asymmetric hydrogenation. Prior to our
investigation, two groups have examined the Rh-cata-
lyzed DKR approach, which remains at the stage of
preliminary studies for low conversion and/or poor
enantio- and diastereoselectivities.7
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2. Results and discussion

We first investigated the effects of several catalyst
precursors and chiral phosphines using methyl benzoyl-
glycinate hydrochloride 18 as shown in Table 1. The
catalyst was prepared prior to the hydrogenation by
mixing the catalyst precursor and chiral phosphine
(1.3 equiv/Rh) in methylene chloride at 23 �C for
10 min and, after concentration in vacuo, was used with-
out any purification. The hydrogenation of 1 was carried
out using 3 mol % of the catalyst under 50 atm of hydro-
gen in the presence of sodium acetate (1 equiv) in acetic
acid at 23 �C for 12 h. The solvent and additive were
chosen according to the case of the iridium-catalyzed
DKR developed.6 The enantiomeric purity and diaste-
reomeric ratio of the product were determined after con-
version to the N-tert-butoxycarbonyl derivative 2. The
use of the neutral and cationic Rh-catalyst from (S)-
MeO-BIPHEP 3 proved disappointing in both yields
and enantiomeric excesses (entries 1 and 2). Chiral ferro-
cenylphosphines 4 and 5 developed by Togni9 were
superior to axially chiral phosphines in this asymmetric
hydrogenation (entries 3–5). There was a slight improve-
ment in the chemical yield when the cationic rhodium
complex, [Rh(nbd)2]BF4, was used as the catalyst pre-
cursor (entries 3 and 4). In particular, the cationic Rh-
catalyst from [Rh(nbd)2]BF4 and (R,S)-PPF-PtBu2 4
afforded anti-b-hydroxy-a-amino acid ester 2 in 70%
yield with 75% ee and diastereomeric ratio of 94:6 (entry
4). The bulkier substituent at the phosphorus of the
ligand affected the enantioselectivity (entries 4 and 5).
Next, using the catalyst from [Rh(nbd)2]BF4 and 4, we
carried out further optimization as shown in Table 2.
The substrate concentration tended to vary the chemical
yield but not the enantioselectivity (entries 1–3). When
the hydrogenation was performed using the toluenesulf-
onic acid salt as the substrate instead of 1, the chemical
Table 1. anti-Selective asymmetric hydrogenation catalyzed by Rh-chiral ph
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Entry Rh precursor Ligand

1 [Rh(cod)Cl]2 (S)-MeO-BIPHEP
2 [Rh(cod)2]BF4 (S)-MeO-BIPHEP
3 [Rh(nbd)Cl]2 (R,S)-PPF-PtBu2

4 [Rh(nbd)2]BF4 (R,S)-PPF-PtBu2

5 [Rh(nbd)2]BF4 (R,S)-PPF-PCy2ÆEtOH

a The hydrogenation was carried out by using Rh-phosphine (prepared from
nation) and sodium acetate (1 equiv) in acetic acid at 23 �C for 12 h.

b Determined by 1H NMR spectra of the reaction mixture.
c Isolated yield in two steps.
d Determined by HPLC analysis.
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yield, and the enantiomeric excess decreased remarkably
(entry 4). Interestingly, the presence of a chloride ion
proved to be essential for a satisfactory enantiomeric
excess (entry 5). After some trial and error, we found
that, surprisingly, the chemical yield is time dependent.
A reaction time of 30 min was found to be enough for
this hydrogenation and the chemical yield and enantio-
meric excess were maximized to 82% yield and 83% ee
(entry 7).10 These results indicate that the hydrogenation
is extremely rapid and that the product might decom-
pose under the hydrogenation conditions. The pressure
of hydrogen had no effect on the enantiomeric excess
but affected the chemical yield (entries 9 and 10). Longer
reaction times under moderate hydrogen pressure
(5 atm) caused decomposition of the substrates and no
effect on the chemical yield (entry 10). The low loading
(0.3 mol %) of the catalyst was fruitless and gave only
24% yield of the product (entry 11). Using the optimized
conditions, we carried out the asymmetric hydrogena-
tion of several aromatic substrates as shown in Table
3. As can be seen from the results in Table 3, the reac-
tion time for giving the maximized yield proved to vary
for each substrate. Although the yields are moderate,
the enantiomeric excess and diastereoselectivities are
satisfactory. It should be noted that this asymmetric
hydrogenation using the Rh-ferrocenylphosphine is not
only the first practically successful example of rho-
dium-catalyzed dynamic kinetic resolution but also
demonstrates new potential of rhodium-catalyzed asym-
metric synthesis.

We next investigated the reaction mechanism of this
unique rhodium-catalyzed hydrogenation. Generally,
rhodium-catalyzed hydrogenation proceeds through a
dihydride mechanism, which differs from a mono-
hydride mechanism of ruthenium-catalyzed hydrogena-
tion. Therefore, it was anticipated that the mechanism
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Table 2. Effects of hydrogen pressure and reaction timea
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OMe
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NH2•HCl
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OHH2

AcONa , AcOH

Bz2O, TEA, THF

1. Rh-(R,S)-PPF-PtBu2 complex

2.
1 2

Entry Concentration (M) Time H2 (atm) anti:synb Yieldc (%) eed (%)

1 0.088 48 h 50 94:6 71 73
2 0.044 48 h 50 93:7 55 83
3 0.022 48 h 50 91:9 49 79
4e 0.088 48 h 50 96:4 15 36
5f 0.088 48 h 50 94:6 44 73
6 0.088 1 h 50 94:6 75 84
7 0.088 30 min 50 94:6 82 83
8 0.088 10 min 50 96:4 26 77
9 0.088 10 min 100 93:7 62 80
10 0.088 1 h 5 93:7 34 (37)g 80
11h 0.088 12 h 50 94:6 24 82

a The hydrogenation was carried out by using Rh-catalyst (prepared from [Rh(nbd)2]BF4 (3 mol %) and (R,S)-PPF-PtBu2 (4 mol %) prior to the
hydrogenation) and sodium acetate (1 equiv) in acetic acid at 23 �C.

b Determined by 1H NMR spectra of the reaction mixture.
c Isolated yield in two steps.
d Value of the anti-3-hydroxyamino acid ester. Determined by HPLC analysis.
e The toluenesulfonic acid salt as the substrate instead of 1 was used.
f To the conditions in entry 4, tetrabutylammonium chloride was added.
g Isolated yield after 48 h.
h The hydrogenation was carried out by using 0.3 mol % of the Rh-catalyst.

Table 3. anti-Selective asymmetric hydrogenation catalyzed by Rh-(R,S)-PPF-PtBu2 complexa

H2 (50 atm),  23 °C
Rh-(R ,S )-PPF-PtBu2 complex1.
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Entry R R0 Time (h) anti:synb Yieldc (%) eed (%)

1
O

O

Et 5 97:3 61 80

2
BnO

Me 3 92:8 53 84

3
Br

Me 2.5 96:4 73 77

4
S

Et 1.5 97:3 66 79

5
O

Me 1.5 93:7 63 58

a The hydrogenation was carried out by using Rh-catalyst (prepared from [Rh(nbd)2]BF4 (3 mol %) and (R,S)-PPF-PtBu2 (4 mol %) prior to the
hydrogenation) and sodium acetate (1 equiv) in acetic acid at 23 �C.

b Determined by 1H NMR analysis.
c Isolated yield for two steps.
d Determined by HPLC analysis.
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of the Rh-catalyzed hydrogenation might differ from
that of the Ru-catalyzed hydrogenation. In addition,
the anti-product should also be obtained by hydrogena-
tion of the enol form 7 of the substrates as shown in Fig-
ure 2. In order to elucidate the origin of the extremely
high anti-selectivity, we carried out hydrogenation of a
substrate with a quaternary carbon at the C2 position,
which should disclose whether the reaction proceeds
by hydrogenation of keto form 6 or enol form 7.
Thus, racemic 2-amino-2-methyl-3-oxo-3-phenylpropionic
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acid methyl ester 8,11 a non-enolizable substrate, was
subjected to asymmetric hydrogenation as shown in
Scheme 1. The reaction also proceeded under the condi-
tions described above to afford after 1.5 h, a mixture of
two corresponding b-hydroxy-a-amino acid esters in
17% yield with a ratio of 73:27 (judged by the 1H
NMR spectrum). The major isomer was found to be
96% ee by HPLC analysis and confirmed as (2R,3S)-
syn by comparison to the literature value,12 although
the absolute stereochemistry of the minor anti-isomer
remains to be determined. Nevertheless, this result clearly
indicates that the Rh-catalyzed asymmetric hydrogena-
tion of the a-amino-b-keto esters takes place through
reduction of the C@O double bond to produce the b-
hydroxy-a-amino acid esters with anti-stereochemistry.
3. Conclusion

In conclusion, we have succeeded in the development of
a rhodium-catalyzed asymmetric hydrogenation of
a-amino-b-keto ester hydrochlorides through dynamic
kinetic resolution in the synthesis of anti-aromatic
b-hydroxy-a-amino acid esters. Further investigations
on the mechanism and optimization of this unique rho-
dium-catalyzed dynamic kinetic resolution are under
way in this laboratory.
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